ORGANIC LETTERS 1999 Vol. 1, No. 10 ¹⁶²⁷-**¹⁶²⁹**

First Total Synthesis of (±**)-Methyl Gummiferolate Using a Homoallyl**−**Homoallyl Radical Rearrangement Reaction**

Masahiro Toyota,*,† Masahiro Yokota, and Masataka Ihara*

*Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku Uni*V*ersity, Aobayama, Sendai 980-8578, Japan mihara@mail.pharm.tohoku.ac.jp*

Received September 1, 1999

ABSTRACT

The first total synthesis of (±**)-methyl gummiferolate (1b) has been achieved with a high diastereoselectivity. The key steps included the homoallyl**−**homoallyl radical rearrangement reaction of the enyne 8 to afford the suitably functionalized bicyclo[2.2.2]octane 9 and the intramolecular Diels**−**Alder reaction of the tetraene 12 for the construction of the AB ring system of 1b.**

Gummiferolic acid (**1a**), isolated from *Margotia gummifera* by Pinar et al., $¹$ is a tetracyclic diterpene which possesses a</sup> bicyclo[2.2.2]octane subunit in the CD ring part and an angeloxy group attached to C-7 in the B ring. Although little is known about the substantial biological activity of atisirenoic acid (2) ,² **1a** shows plant growth-regulatory activity similar to or greater than that displayed by gibberellic acid.³ Judging from the result of the bioassay, the presence of an oxygenated function on C-7 is important, as it increases the activity. In addition, gummiferolic acid (**1a**) has been used as an invaluable substrate in the field of microbiological transformation.4 The unique structural characteristics and the promising biological activities have made gummiferolic acid (**1a**) an attractive synthetic target.

We have investigated the synthetic potential of the homoallyl-homoallyl radical rearrangement reaction⁵ and recently reported a sequential three-step, one-pot construction of the bicyclo[2.2.2]octane ring system controlled by the stereoelectronic effect of the substituent group.⁶ In this paper, we wish to present the first total synthesis of (\pm) -methyl gummiferolate (**1b**), in which the homoallyl-homoallyl radical rearrangement reaction for the construction of the highly functionalized bicyclo^[2.2.2]octane compound is employed as a key step.

Methyl gummiferolate (1b); R=Me

Figure 1.

[†] E-mail: matoyota@mail.pharm.tohoku.ac.jp.

⁽¹⁾ Pinar, M.; Rodriguez, B.; Alemany, A. *Phytochemistry* **1978**, *17*, 1637.

⁽²⁾ Bohlmann, F.; Abraham, W. R.; Sheldrich, W. S. *Phytochemistry* **1980**, *19*, 869.

⁽³⁾ Villalobos, N.; Martin, L.; Macias, M. J.; Mancheno, B.; Grade, M. *Phytochemistry* **1994**, *37*, 635.

^{(4) (}a) Fraga, B. M.; Guillermo, R. *Phytochemistry* **1987**, *26*, 2521. (b) Fraga, B. M.; Guillermo, R.; Hanson, J. R. *Phytochemistry* **1992**, *31*, 503.

As shown for the retrosynthetic analysis in Scheme 1, the key feature of the synthesis involves the intramolecular Diels-Alder reaction of the tetraene **³**, which would be prepared from the bicyclo[2.2.2]octane compound **4**. The bicyclic compound **⁴** would be produced by the homoallylhomoallyl radical rearrangement reaction of the monocyclic enyne **5**, which could be derived from commercially available *cis*-1,2,3,6-tetrahydrophthalic anhydride (**6**).

The synthesis commenced with the transformation of **6** into lactone **7** in two steps by a modification of the known procedure (Scheme 2).7 Introduction of a propargyl moiety

Reagents and conditions: (a) MeOH, reflux, 100%; (b) MeMgI, Et₂O, then aq. H₂SO₄, 76%; (c) LDA, THF, HMPA, -78 °C, then propargyl bromide, -78 °C, 85%; (d) LAH, Et2O, 99%; (e) Ac2O, pyridine, 100%.

to **7** followed by LAH reduction gave the corresponding diol, which was subjected to monoacetylation to afford the enyne **8** in 84% overall yield from **7**.

The homoallyl-homoallyl radical rearrangement reaction⁸ of **8** provided the desired bicyclo[2.2.2]octane derivative **9**⁹ in 32% yield. The bicyclo[3.2.1]octane compound **10**⁹ (50%) was also generated (Scheme 3).

Formation of **10** from the enyne **8** may be interpreted by 1,5-radical translocation ($I \rightarrow II$) of the initially formed vinyl radical **I** followed by a 5*-exo-trig* cyclization process as depicted in Scheme 4. On the basis of our model studies,⁶

Reagents and conditions: (a) Bu₃SnH, AIBN, benzene, reflux, then SiO₂, CH₂Cl₂, 9: 32%, 10: 50%.

the generation of the bicyclo[3.2.1]octane ring system was not anticipated.

Having assembled the requisite skeletal framework, the tetraene **12** for the next key step was synthesized as shown in Scheme 5. The isopropenyl moiety (dienophile) was prepared by the treatment of 9 with POCl₃ (99%), and the diene unit was constructed by hydrolysis followed by Parikh oxidation and coupling reaction with ((triethylsiloxy)penta-

⁽⁵⁾ Toyota, M.; Wada, T.; Fukumoto, K.; Ihara, M. *J. Am. Chem. Soc*. **1998**, *120*, 4916.

⁽⁶⁾ Toyota, M.; Yokota, M.; Ihara, M. *Tetrahedron Lett*. **1999**, *40*, 1551. (7) Canonne, P.; Akssira, M.; Lemay, G. *Tetrahedron Lett*. **1981**, *22*, 2611.

⁽⁸⁾ **Procedure for the Conversion of 8 into 9**: To a stirred solution of the enyne **8** (19.7 g, 78.9 mmol) in degassed benzene (1.20 L) was slowly added a degassed benzene solution (40 mL) of Bu3SnH (24.2 mL, 190 mmol) and AIBN (400 mg, 2.44 mmol) over a period of 2 h under reflux. After 2 h of refluxing, the solvent was removed under reduced pressure. The residue was dissolved in CH_2Cl_2 (1.20 L), and then silica gel (300 g) was added. After vigorous stirring for 2 days, the mixture was filtered through Celite. The filtrate was concentrated to give an oil, which was chromatographed on silica gel. Elution with hexane followed by a 3:1 mixture of hexanes-EtOAc successively afforded the bicyclo^[3.2.1]octane compound **10** (21.4 g, 50%) and **9**, containing a small amount of tin species. After washing of the crude **9** with hexane, the bicyclo[2.2.2]octane compound **⁹** (6.38 g, 32%), mp 67-⁶⁹ °C, was isolated.

 (9) The structure assigned to **10** is supported by a ¹H-¹H COSY experiment in the NMR spectrum. **Compound 9**: ¹H NMR (300 MHz, CDCl₃) δ 4.77 (1H, q, *J* = 2.0 Hz), 4.63 (1H, q, *J* = 2.0 Hz), 4.21 (1H, d, $J = 11.0$ Hz), 4.12 (1H, d, 11.0 Hz), 2.32–2.27 (1H, m), 2.26–2.10 (2H, m), 2.07 (3H, s), $1.94-1.73$ (3H, m), $1.72-1.58$ (3H, m), $1.43-1.33$ (1H, m), 1.32 (3H, s), 1.26 (1H, ddd, $J = 11.0$, 9.0 and 2.0 Hz) and 1.18 (3H, m), 1.32 (3H, s), 1.26 (1H, ddd, *J* = 11.0, 9.0 and 2.0 Hz) and 1.18 (3H, s); ¹³C (75 MHz, CDCl₃) δ 171.03, 150.63, 105.66, 74.78, 70.50, 49.24, 41.73, 37.73, 36.29, 32.59, 31.57, 26.09, 24.24, 23.87 and 20.94; MS (*m*/ *z*): 234 ($M^+ - H_2O$). Anal. Calcd for C₁₅H₂₄O₃: C, 71.39; H, 9.58. Found: C, 71.22; H, 9.39. **Compound 10**: ¹H NMR (300 MHz, C₆D₆) δ 5.92–5.82 (1H, m), 5.38 (1H, dt, $J = 9.0$ and 3.0 Hz), 4.32 (2H, s), 2.51 5.92–5.82 (1H, m), 5.38 (1H, dt, $J = 9.0$ and 3.0 Hz), 4.32 (2H, s), 2.51
(1H, do, $J = 17.0$ and 2.0 Hz), 2.18 (1H, do, $J = 8.0$ and 4.0 Hz), 2.04 (1H, dq, $J = 17.0$ and 2.0 Hz), 2.18 (1H, dq, $J = 8.0$ and 4.0 Hz), 2.04 (1H dd, $J = 6.0$ and 3.0 Hz), 1.98 (1H d, $J = 3.0$ Hz), 1.92–1.83 (2H) (1H, dd, $J = 6.0$ and 3.0 Hz), 1.98 (1H, d, $J = 3.0$ Hz), 1.92-1.83 (2H, m), 1.75 (3H, s), 1.74 (1H, ddd, *J* = 17.0, 4.0 and 2.0 Hz), 1.63-1.51 (6H, m), 1.45-1.30 (7H, m), 1.28 (3H, s), 1.27 (3H, s), 1.00-0.80 (16H, m), m), $1.45-1.30$ (7H, m), 1.28 (3H, s), 1.27 (3H, s), $1.00-0.80$ (16H, m), $0.56-0.44$ (1H br s): HRMS calcd for $C_{27}H_{50}O_{2}^{120}Sn$ 542.2785 found 0.56–0.44 (1H, br s); HRMS calcd for $C_{27}H_{50}O_3^{120}Sn$ 542.2785, found 542.2799 542.2799.

Reagents and conditions: (a) POCl₃, pyridine, 99%; (b) K₂CO₃, MeOH, 100%; (c) DMSO, SO₃·pyridine, Et₃N, CH₂Cl₂, 97%; (d) 3-triethylsilyloxy-1,4-pentadiene, ^sBuLi, THF, -78 °C, 64% (+ minor stereoisomer 21%); (e) Ac₂O, DMAP, CH₂Cl₂, 99%.

dienyl)lithium according to Oppolzer's method.¹⁰ The stereochemical outcome of this coupling process can be explained by a Cram model. Finally, acetylation of the resulting hydroxyl group furnished the tetraene **12**.

Intramolecular Diels-Alder reaction of **¹²** provided a near-quantitative yield of the tetracyclic silyl enol ether **13**, which was rapidly treated with tetrabutylammonium fluoride to give the ketone **14** (88%) as the only observed product. The stereoselective protonation is presumably subject to thermodynamic control. Functionalization at the C-4 position proved to be much more difficult than expected. Ultimately, we adopted BF₃-promoted rearrangement of the exocyclic methylene epoxide.¹¹ A Corey-Chaykovsky reaction¹² of the ketone **14** led to the epoxide **15** (73%) with a high degree of stereoselectivity via attack from the face opposite to the angular methyl group at C-10. Acid-catalyzed rearrangement of **15** followed by oxidation, esterification, and hydrolysis of the acetyl moiety afforded the ester **16** in 65% overall yield. After protection of the hydroxyl group of **16**, methylation and deprotection of the silyl group yielded the alcohol **17** as a single product. Finally, the angelate ester group was prepared by applying Greene's technique (Scheme 6).13 The

Reagents and conditions: (a) 200 °C, toluene, sealed tube, 99%; (b) Bu₄NF, THF, 88%; (c) Me₃S⁺OI, NaH, DMSO, 50 °C, 73%; (d) BF₃•Et₂O, toluene, -20 °C; (e) NaClO₂, KH₂PO₄, 2-methyl-2-butene, BuOH-H₂O; (f) DBU, MeI, MeCN; (g) K₂CO₃, MeOH, 50 °C, 65% for 4 steps; (h) TMSOTf, lutidine, CH₂Cl₂, 96%; (i) LDA, THF, -78 °C, then HMPA, MeI, -78 °C, 81%; (j) Bu₄NF, THF, 91%; (k) angelic acid, 2,4,6-trichlorobenzoyl chloride, Et₃N, toluene, 80 °C, 55%.

synthetic (\pm) -methyl gummiferolate (1b) thus obtained was spectroscopically identical with that reported.¹

In summary, the first total synthesis of (\pm) -methyl gummiferolate (**1b**) has been accomplished from commercially available *cis*-1,2,3,6-tetrahydrophthalic anhydride. The homoallyl-homoallyl radical rearrangement reactionintramolecular Diels-Alder strategy should be adaptable for the synthesis of other atisirene-type terpenoids.

OL990264U (10) Oppolzer, W.; Snowden, R. L.; Briner, P. H*. Hel*V*. Chim. Acta* **¹⁹⁸¹**, *64*, 2022.

⁽¹¹⁾ Blackett, B. N.; Coxon, J. M.; Hartshorn, M. P.; Jackson, B. L. J.; Muir, C. N. *Tetrahedron* **1969**, *25*, 1479.

⁽¹²⁾ Corey, E. J.; Chaykovsky, M. *J. Am. Chem. Soc*. **1965**, *87*, 1353.

⁽¹³⁾ Hartmann, B.; Kanazawa, A. M.; Depres, J.-P. Greene, A. E. *Tetrahedron Lett*. **1991**, *32*, 5077.